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Chapter 1

Introduction [1]

Java has a security architecture which intends to protects the client and server system
from malicious code. The source of such malicious code can vary widely. It could
be installed dynamically(executing online downloaded applets) or could be statically
configured(added to the system by a user). Java applet can be downloaded from internet
via a web browser and can be uploaded onto a server using Remote Method Invocation.
This dynamic code can do lot of damage to the system and therefore it is important to
check the code before actually executing it. In this report we focus on the automated
checking of Java code for certain types of potential security threats.

Java Security Model
Java uses sandboxing for protecting system, from external applications. When Java
allows a program to be hosted on a system, it provides an environment where the pro-
gram can play. This environment has certain bound which limits the tasks the applet
can do. A typical machine has access to lot of resources. This sandbox prevents the
applet from accessing all these resources and allows access to limited resources.

The security model used for an applet solely depends on the application. When
an applet runs inside a HotJavaT M browser, the browser is the application that has
determined the security policy for that applet. The anatomy of a typical Java application
is as follows:

The bytecode verifier The main task of bytecode verifier is to ensure that Java class
files follow the rules of the language. In resource terms, it helps enforce memory
protections for Java programs.

The class loader The main task of class loader is to loads the classes that are not found
on the CLASSPATH.

The access controller The access controller is responsible for allowing (or prevent-
ing) accesses from the core API to the operating system.

The security manager The security manager acts as the primary interface between
core API and the operating system. It holds the responsibility for allowing(or
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preventing) access to all system resources. The security manager uses the access
controller for this purpose.

The security package This is the basis for authenticating signed Java classes. The
security package classes are present in the java.security package.

The key database To verify the digital signature that accompanies a signed class file,
the security manager and access controller uses set of keys which are present in
key database. In the Java architecture, it is part of the security package, though
it may be manifested as an external file or database.

Figure 1.1: Java Security Architecture.1

Java Class Loader
The class loader, the security manager and the access controller works together to pro-
vide most of the protections associated with the Java sandbox. The class loader is im-
portant because there are certain information about the classes which have been loaded
which only the class loader knows. These information include the origin location of a
class, whether the class was signed or not etc.

As we know that Java applet itself cannot read a file when applet is being run in a
browser such HotJava. The HotJava itself can read files even when it is running applets.
Both browset and applet are using the same class to read the file. This differentiation is
caused by class loader. The class loader allows security manager to find out particular
information about the class, which allows the security manager to apply correct security
policy to class depending on the context of the request. The specific machanics by
which this is achieved has been discussed later.

Security Manager
The security manager is responsible for determining most of the parameters of the
sandbox. It is ultimately upto the security manager to determine whether a particular
operation should be permitted or rejected. e.g. if Java program tries to open a file it is
upto the security manager to decide whether or not that operation should be permitted
or not. Whenever an operation is requested which is not permitted, the security man-
ager throws an exception to the Java API which asked whether operation was allowed
or not. In general Java applications do not have security manager–unless the author has
provided one. While Java applets have(by default) a very strict security manager.

1This figure has been taken from Java Security by O’reily. See references.
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Access Controller
The access controller is the mechanism which the security manager actually uses to
enforce its protections. The access controller is mainly build on four concepts:

Code sources A code source is a simple object which is merely the URL from which a
class was loaded and the keys that were used to sign that class. The SecureClass-
Loader class (and its subclasses) are responsible for creating and manipulating
these code source objects.

Permissions The access controller operates on permission object which is an instance
of the Permission class(java.security.Permission). The permission class is an
abstract class which represents a particular operation. An instance of the Per-
mission class represents one specific permission. A set of permissions–e.g., all
the permissions that are given to classes signed by a particular individual–is rep-
resented by an instance of the Permissions class (java.security.Permissions).

Policy The security policy specifies which permissions should be applied to which
code cources. It is encapsulated by the Policy class(java.security.Policy).

Protection Domains A protection domain is a grouping of a code source and permissions–
that is, a protection domain represents all the permissions that are granted to a
particular code source. In the default implementation of the Policy class, a pro-
tection domain is one grant entry in the file.

There are two ways in which a permission for a particular resource can be granted
by access controller. When a class request access to a particular resource then the
access controller checks whether the class has the required permissions or not. The
it checks the class above it which used the current class object has the permission or
not. Similarly it checks all the classes in the hierarchy and takes intersection of the
permissions to determine the permission for current operation.

Another way is by using privileged action. A class can be temporarily given the
ability to perform a specific function. This can be done by using the doPrivileged()
function. This method specifies a stopping point in the access controller checking of
permissions for classes on the stack. A protection domain can grant privileges to code
that has called it, but it cannot grant privileges to code that it calls i.e. when a non-
privileged class calls the Java API, the API can grant access the class the privileges to
do some action. However any class cannot grant permission to a class it calls.

This kind of behaviour by doPrivileged() lead to many potential security threats
to the system. Methods could read restricted files when invoked with doPrivilege and
then can leak the sensitive data.

The structure of this report is as follows: the section Problem Statement formally
describes the problem we intend to solve; the section Points-to Analysis describes the
state of the art in abstractions suitable for OOP languages. It also describes the state of
the art shape analysis; the section Security Analysis describes the analysis that intend
to perform. It also describes the difference between our analysis and state of the art;
the section Datalog gives a general structure and execution model of datalog. It also
describes a specific interpreter of datalog, bddbddb which we have used in our analysis;
we conclude in the next section with suggestions for future works.
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Problem Statement
Oracle has issued secure coding guidelines but they may not always be followed while
developing libraries. Library function can get external class object and can execute
their method using the doPrivilege. This call to doPrivilege can potentially return a
classified value. Therefore it must be made sure that such classified are not returned
from the library function. Let us look at an example program where a classfied value
is being returned cleverly.

1 p u b l i c c l a s s T a i n t E s c a p e {
2
3 p r i v a t e O b j e c t answer ;
4
5 p u b l i c vo id e n t r y ( f i n a l O b j e c t t a i n t e d ) {
6 O b j e c t t a i n t = new O b j e c t ( ) ;
7 t a i n t = A c c e s s C o n t r o l l e r . d o P r i v i l e g e d (
8 new P r i v i l e g e d A c t i o n <Objec t >() {
9 p u b l i c O b j e c t run ( ) {

10 re turn ( ( E i t h e r ) t a i n t e d ) .
11 doSomething ( ) ;
12 }
13 } ) ;
14
15 answer . n e x t = t a i n t ;
16 }
17
18 p u b l i c O b j e c t g e t V a l u e ( ) {
19 re turn answer ;
20 }
21
22 }

In the example above a tainted value is introduced in the function and is assigned
to taint at line 7. The address to taint is being stored in the publicly accessible mem-
ber object answer at line 15. After the function is executed, malicious user user can
get the classified value by calling the getValue() function. Thus this class can be
compromised.

All such instances have to be detected by doing static analysis of the library code
only without making any assumptions about user code. In Java all data is always stored
in the heap and only a pointer to it stored on the stack. So if we had an analysis which
could detect which data members can have paths(direct or indirect) to tainted value,
then we can check whether any such data member will be accessible to external code.
This will enable us to security vulnerabilities in the code.
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Chapter 2

Points-to Analysis [2–4]

One of the techniques for detecting security violations is static analysis. Points-to
analysis is a type of static analysis technique which serves as a basis for many other
techniques for object-oriented programming languages like Java. It computes for all
data, pointers and fields in object which can point to it while executing the program.
For a static points-to anlysis to terminate, the data (or their abstraction) that a variable
can point to, which are objects in Java, need to be finite. Thus we need to use abstrac-
tions to approximate concrete runtime objects(also called heap abstractions) which are
finite. The precision and scalability of the points-to analysis depends on the chosen
abstractions.

Let is look at an example.
1 head = NULL; c o u n t = 0 ;
2 whi le ( c o u n t < l i m i t ) {
3 x = new node ( ) ;
4 c o u n t = c o u n t + 1 ;
5 x . n e x t = head ;
6 head = x ;
7 }

The statement at line number 3 will be executed multiple times each time creating
new node. In the concrete behaviour there will be multiple objects being created and x
and head will point to last object created. While abstract behaviour keeps track of only
the object creation site. The variable x always points to location at line number 3 while
head may point to either line 3 or null.

The most basic abstraction that is used is to approximate all objects which are
created by single new statement by a single object. This is referred to as object creation
site abstraction. So the location of the statement represents all objects created by a
statement at runtime. Another aspect of the abstraction is that two fields of an object
can point to different object. We need to represent abstract objects pointed to by fields
of abstract object.

A useful way to understand this is to consider the objects created on the heap and
pointers to them are nodes of a graph. If an object/pointer points to another object the
corresponding nodes will have a directed edge.

Using this abstraction various analysis are possible. Escape analysis is traditionally
used by compilers to determine which objects are local to a method and hence can be
allocated on the stack. Taint analysis in a security context determines whether the
values from untrusted sources reach a secure location. This can be viewed as source to
sink dataflow.
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Notations: Let H denote the set of all the heap directed pointers at any given time
and F denote the set of all pointers at that time. For p,q ∈ H , a path from p to q is
sequence of pointer fields which needs to be traversed for reaching q from p. Since
there is no upper limit on length of path we only keep track of first field of the path.
TO distinguish between path of length 1(direct path) and path of length more than
1(indirect path) we use superscript D and I respectively. Since it is possible to have
multiple indirect paths starting at a field f , we use no. of paths as superscript along
with I. If this no. of paths is more than a certain k then we use inf to represent it.

We also use field sensitive path matrix PF which stores all the information about
paths between objects(direct and indirect paths).

Given p,q ∈H , f ∈ F :

ε ∈ PF [p, p] where ε denotes the empty path.
f D ∈ PF [p,q] if there is a direct path f from p to q.

f Im ∈ PF [p,q] if there are m indirect paths starting
with field f from p to q and m≤ k.

f I∞ ∈ PF [p,q] if there are m indirect paths starting
with field f from p to q and m > k.

Two pointers p,q ∈H are said to interfere at a program point if there exists s ∈H
such that both p and q have paths reaching s at that point.

We also use following operations in our analysis. Let S denote the set of approxi-
mate paths between two nodes, P denote a set of pair of paths, and k ∈ N denote the
limit on maximum indirect paths stored for a given field. Then,

- Projection: For f ∈ F ,S. f extracts the paths starting at field f .

S. f ≡ S∩{ f D, f I1, ..., f Ik, f I∞}

- Counting: The count on the number of paths is defined as:

|ε|= 1, | f D|= 1, | f I∞|= inf

| f I j|= j f or j ∈N

|S|= ∑
α∈S
|α|

2.1 Shape Analysis [3, 4]
One of the most popular analysis based on this abstraction is the Shape Analysis. This
has traditionally been used for speeding up compilers and for dataflow analysis. Pro-
grams in all modern languages use heap intensively. If we want to have any non-trivial
analysis, then we need to reason about the heap. The reasoning is complex because
heap structures are not static but are manipulated dynamically during execution of the
program.

The goal of shape analysis is to estimate the shape of data structure accessible from
a given heap directed pointer: is it tree-like, dag-like or a general graph containing
cycles. More specifically it identifies tree-like and dag-like structures built by program
and provide conservative estimates otherwise.

State of the art shape analysis [3] captures field sensitivity using two components:
(a) Field based boolean values to remember direct connections between two pointer
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variables, and (b) Path matrices that store the approximate paths between pointer vari-
ables. The shape of a pointer variable at any given program point can be inferred from
these two components.

Let us look at the following code snippets.

1 o b j e c t o1 = new o b j e c t ( ) , o2 = new o b j e c t ( ) , o3 = new o b j e c t ( ) ;
2 o1 . n e x t 1 =o2 ;
3 o2 . n e x t 1 =o3 ;
4 o3 . n e x t 1 =o1 ;

1 o b j e c t o1 = new o b j e c t ( ) , o2 = new o b j e c t ( ) , o3 = new o b j e c t ( ) ;
2 o1 . n e x t 1 =o2 ;
3 o2 . n e x t 1 =o3 ;
4 o1 . n e x t 2 =o3 ;

If o2 is a tainted object then in the first code snippet nothing can be returned because
all the variables have paths to o2, while o3 can be returned in second code snippet.

For {p,q} ⊆H , f ∈ F ,n ∈N and op ∈ {+,-}, we have basic eight statements that
can access or modify the heap structures. The superscript in denotes those values before
the analysis of current statement. The superscript kill denotes those values which will
be removed from in values to get final values. The superscript gen denotes those values
which will be generated from this statement.

We give analysis of each of the basic statements and the changes introduced by
them.

p = NULL This statement kills all the existing values of p. The heap node pointed by
p is no longer reachable by p.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = False pgen

Dag = False

∀s ∈H , fps = False fsp = False

Pkill
F [p,s] = Pin

F [p,s] Pgen
F [p,s] = /0

Pkill
F [s, p] = Pin

F [s, p] Pgen
F [s, p] = /0

p = malloc() After this statement all the existing dataflow values of p get killed and p
starts to a newly allocated object. The kill effect is exactly same as p = NULL.
After the statement p has an empty path to itself only.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = False pgen

Dag = False

∀s ∈H , s 6= p,
fps = False fsp = False

Pkill
F [p,s] = Pin

F [p,s] Pgen
F [p,s] = /0

Pkill
F [s, p] = Pin

F [s, p] Pgen
F [s, p] = /0

Pkill
F [p, p] = Pin

F [p, p] Pgen
F [p, p] = {ε}
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p = q, p = &(q→ f), p = q op n We consider these three types if statements as equiv-
alent. These statements kill all the existing relations of p and it will point to
heap object which was earlier pointed by q or NULL. The kill effect is same as
previous cases. The generated paths from p will be same as those of q.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = qin

Cycle[q/p] pgen
Dag = qin

Dag[q/p]

∀s ∈H ,s 6= p,∀ f ∈ F fps = fqs fsp = fsq

Pkill
F [p,s] = Pin

F [p,s] Pgen
F [p,s] = Pin

F [q,s]

Pkill
F [s, p] = Pin

F [s, p] Pgen
F [s, p] = Pin

F [s,q]

Pkill
F [p, p] = Pin

F [p, p] Pgen
F [p, p] = Pin

F [q,q]

p→ f = NULL This statement breaks the existing link emanting from p. Thus all
paths starting from p using f are broken.

pkill
Cycle = False, pkill

Dag = False

pgen
Cycle = False, pgen

Dag = False

∀q,s ∈H ,s 6= p, fpq = False

Pkill
F [p,q] = Pin

F [p,q].f Pkill
F [s,q] = /0

p→ f = q This statement first breaks all the existing links of p which starts with f and
then links the object pointed by p to object pointed by q. It is possible that the
shape of p can become a dag or a cycle after this statement.

pgen
Cycle = ( fpq∧qin

Cycle)∨ ( fpq∧ (|PF [q, p]| ≥ 1))

pgen
Dag = ( fpq∧qin

Dag)∨ ( fpq∧ (|IF [p,q]|> 1)

qgen
Cycle = fpq∧ (|PF [q, p]| ≥ 1)
qgen
Dag = False
fpq = True

For nodes s ∈ H other than p or q, the function sgen
cycle captures the fact that

cycle on s consists of some path from s to p(or q) and the fact that cycles on
p(or q) have just been created by this statement. Similarly the function sgen

dag
simply say that variable s reaches a DAG because there are more than one way
of interference between s and q.

sgen
Cycle = ((|PF [s, p]| ≥ 1)∧ fpq∧qin

Cycle)

∨ ((|PF [s, p]| ≥ 1)∧ fpq∧ (|PF [q, p]| ≥ 1))
∨ ((|PF [s,q]| ≥ 1)∧ fpq∧ (|PF [q, p]| ≥ 1)),

∀s ∈H ,s 6= p,s 6= q

sgen
Dag = (|PF [s, p]| ≥ 1)∧ fpq∧ (|IF [s,q]|> 1),

∀s ∈H ,s 6= p,s 6= q

11



After this statement all the nodes which have paths towards p will have paths
towards q.

For r,s ∈H :

Pgen
F [r,s] = |Pin

F [q,s]|?Pin
F [r, p], s 6= p, r 6∈ {p,q}

Pgen
F [r, p] = |Pin

F [q, p]|?Pin
F [r, p], r 6= p

Pgen
F [p,r] = |Pin

F [q,r]|? (Pin
F [p, p]	{ε}∪{ f I1}),

r 6= q

Pgen
F [p,q] = { f D} ∪ (|Pin

F [q,q]−{ε}|?{ f I1}) ∪
(|Pin

F [q,q]|? (Pin
F [p, p]	{Pin

F [p, p].f ∪{ε}}))
Pgen

F [q,q] = 1?Pin
F [q, p]

Pgen
F [q,r] = |Pin

F [q,r]|?Pin
F [q, p], r 6∈ {p,q}

p = q→ f The values killed by this statement are same as those of p = NULL . The
values created are heavily approximated. After this statement p points to heap
object which is accessible from pointer q through link f . This only shows that p
is reachable from any r which can reach q→ f before assignment. Shape of no
other pointer variable gets affected.

We record that q reaches p through f . Also, any object reachable from q using f
is marked as reachable from p using all fields.

fqp = True

hpr = |Pin
F [q,r].f | ≥ 1 ∀h ∈ F ,∀r ∈H

As a side effect of this statement, any node s that is reachable from q through f
becomes reachable from p. This, however, cannot determine path from p to s.
So a conservative estimate is that any path starting starting from can reach s.

∀s ∈H ,s 6= p∧Pin
F [q,s].f 6= /0

P1[p,s] =

{ε} (Pin
F [q,s].f = f D)
∧ q.shape evaluates to Tree or Dag

U Otherwise

P1[p, p] =

{
U q.shape evaluates to Cycle

{ε} Otherwise

In case a cycle is reachable from q we can safely say that there is self loop on p.

P2[s, p] = ∞?Pin
F [s,q] ∀s ∈H , s /∈ {p,q}

If p 6= q, then we record the path from q to p as:

P2[q, p] =

{
{ f D} q.shape evaluates to Tree

U Otherwise

Any node s(excluding p and q), that has path to q before statement, will have
path to p after statement. However we cannot exact number of such paths and
therefore we use upperlimit ∞ as a approximation.

∀r,s ∈H , r 6∈ {p,q}
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P3[s, p] =
⋃
r
{α | f D ∈ Pin

F [q,r]∧α ∈ Pin
F [s,r]	Pin

F [s,q]}

Those nodes that interfere with the node corresponding to q→ f , without going
through q will have paths to p after the statement.

Pgen
F [r,s] = P1[r,s]∪P2[r,s]∪P3[r,s] ∀r,s ∈H

Let us look at small example1 program and modifications to its path matrix after
the statements.

void mirror(tree t) {
S11: tl = t->left;
S12: tr = t->right;
S13: mirror(tl);
S14: mirror(tr);
S15: t->left = tr;
S16: t->right = tl;

}

Stmt Path matrix PF after the stmt

S11

t tl tr

t /0 {leftD} /0

tl /0 /0 /0

tr /0 /0 /0

S12

t tl tr

t /0 {leftD} {rightD}
tl /0 /0 /0

tr /0 /0 /0

S15

t tl tr

t /0 /0 {rightD,leftD}
tl /0 /0 /0

tr /0 /0 /0

S16

t tl tr

t /0 {rightD} {leftD}
tl /0 /0 /0

tr /0 /0 /0

1This example has been taken from Prof. Amey’s paper on Shape Analysis. See references
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Chapter 3

Security Analysis

We propose a security based on points-to framework which detect unauthorized escape
of classified values from the program. Our analysis determines which pointer are safe
to be returned from a library function and which pointers can be stored as public data
members in the class object.

Tainted values can be introduced inside the function using statements like value =
doPrivileged(...); Other data members can then point to these values directly or
indirectly via multiple paths. All such object which have path to these tainted values
have to identified so that they do not escape the function. Once we have determined
which objects are safe to be returned, we can identify the functions which are returning
such values and thus might be used to perform malicious activities.

Notations: The notation used is similar to that of shape analysis. We have an extra
matrix for determining paths to bad object.

We also use field sensitive taint matrix TF which stores all the information about
paths to tainted objects(direct and indirect paths). The rows are pointer names and
columns are field names. Also we have a special column called D for pointer which
directly points to tainted object.

Given p ∈H , f ∈ F :

1 ∈ TF [p,D] when p directly points to tainted object
f D ∈ TF [p, f ] if there is a direct path f from p to tainted object.

f Im ∈ TF [p, f ] if there are m indirect paths starting
with field f from p to taint and m≤ k.

f I∞ ∈ TF [p, f ] if there are m indirect paths starting
with field f from p to taint and m > k.

We store whether an object is bad or not using boolean values. We analyze each
kind of basic statement that can modify heap or introduce tainted value in the function.
Since most of effects of these statements are similar to those of shape analysis, we
only give differences here. Also we only emphasize those which might change after a
particular statement.

p = “doPrivilege()” This rule specifies the introduction of tainted value into the sys-
tem. First of all this rule kills are existing relations of p. The nodes which X
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could earlier reach are no longer reachable. Also those nodes which could ear-
lier reach p can no longer reach. If X had any path to something earlier then that
gets killed. Now p points to a tainted value directly.
∀ f ∈ F

TF kill[p, f ] = TF in[p, f ] T gen
F [p,D] = 1

p = NULL All the existing relations of p are killed. All paths from p to q or from q to
p gets killed. Furthermore if p had a path to tainted value(direct or indirect via
any field), that also gets killed. p is now completely Null. ∀ f ∈ F

T kill
F [p,D] = T in

F [p,D] T gen
F [p,D] = /0

T kill
F [p, f ] = T in

F [s, p] T gen
F [p, f ] = /0

p = malloc() The relations killed by this rule are exactly same as that of the previous
rule. The only change is that now p is newly allocated object rather than Null.
There is no change in tainted paths of other objects.
∀ f ∈ F

T kill
F [p,D] = T in

F [p,D] T gen
F [p,D] = /0

T kill
F [p, f ] = T in

F [p, f ] T gen
F [p, f ] = /0

p = q, p = &(q→ f), p = q op n We consider all these three statements as equivalent.
All the existing relations of p are killed and now p will point to same object
which was pointed to by q or Null. All the previous tainted paths also gets killed
and the new tainted relations of p will be same as those of q. Note we have made
this approximation conservatively. The generated paths from p will be same as
those of q
∀ f ∈ F

T kill
F [p,D] = T in

F [p,D] T gen
F [p,D] = T in

F [q,D]

T kill
F [p, f ] = T in

F [q, f ] T gen
F [p, f ] = T in

F [q, f ]

p→ f = NULL This statement kills all existing relations of p which starts with f .
Also all paths to tainted objects from p via field f gets killed as well. ∀s ∈
H ,s 6= p,g ∈ F

T kill
F [p, f ] = T in

F [p, f ] T kill
F [s,D] = /0

T kill
F [s,g] = /0

p→ f = q This rule can viewed as a combination of two rules. First one nullify the
field f of p ans second builds paths from p via f to all s to which q has path. So
we first break all the relations of p→ f as per above. Then create paths to all s
to which q had a path. Also any r which had path to p will have path to q and all
s reachable from q.

Initially all paths to tainted objects starting from p via f gets killed. The if q had
a path to tainted object, then p will also have a path to tainted object via f . Also
all r having paths to p will have paths to tainted objects if q has such a path.
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For r,s ∈H ,g ∈ F :

T gen
F [p, f ] = T in

F [q,D]∨TF in[q,g]

T gen
F [r,g] = Pin

F [r, p].g! = /0 ∧
(T in

F [q,D] ∨ TF in[q,g])

p = q→ f All the existing paths(including tainted paths) of p gets killed. The paths
generated are same as those of shape analysis with augmentation of the few
tainted paths. If q had a direct path to tainted object via f then p now directly
points to tainted object. Else if q had an indirect path to tainted object then p
will have indirect path to tainted object via all its fields.

∀g ∈ F

T gen
F [p,g] = T in

F [q, f ]

Let us look at small example program and modifications to its taint matrix after the
statements.

void mirror(tree t) {
S11: tn = doPrivileged();
S12: t->left = tn;
S13: tn = Null;
S14: t->right = tr;

}

Stmt Taint matrix TF after the stmt

S11

D left right

tn 1 /0 /0

tr /0 /0 /0

t /0 /0 /0

S12

D left right

tn 1 /0 /0

tr /0 /0 /0

t /0 {leftD} /0

S13

D left right

tn /0 /0 /0

tr /0 /0 /0

t /0 {leftD} /0

S14

D left right

tn /0 /0 /0

tr /0 /0 /0

t /0 {leftD} /0
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Chapter 4

Datalog [5, 6]

Datalog is a declarative logic programming language that syntactically is a subset of
prolog. It is often used as a query language for deductive databases. Some of the recent
applications of datalog include data integration, information extraction, networking,
program analysis, security and cloud computing.

Unlike prolog, the order of statements does not affects the program in datalog.
Furthermore, Datalog queries on finite sets are guarranteed to terminate, so Datalog
does not have Prolog’s cut operator. This makes Datalog a truely declarative language.

The main features of difference between datalog and prolog are

• Datalog disallows complex terms as arguments of of predicates e.g., p(1,2) is
admissible but not p(f(1),2),

• It imposes restrictions on the use of negation and recursion

• It requires that every variable that appears in the head of a clause also appears in
a nonarithmetic positive literal in the body of the clause,

• It requires that every variable appearing in a negative literal in the body of a
clause also appears in some positive literal in the body of the clause

Query evaluation with Datalog is based on first order logic, and thus is sound and
complete.

4.1 Advantages of Datalog
Using Datalog over traditional programming languages has many advantages like

• Analysis implementation is greatly simplified. It can be expressed in few lines
of Datalog as compared to thousands of lines of traditional languages.

• By automatically deriving implementation from Datalog specification, we intro-
duce fewer errors.

• Since all analysis informational is expressed in a uniform manner, it is easy to
use analysis results or to combine analyses.

• Optimization of Datalog can be applied to all analyses expressed in the language.
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Although Datalog has many advantages, one of its biggest disadvantage comes
from the fact that implementation using logic programming systems are often slower
than traditional implementations and can have difficulty scaling to large programs.

We give a very brief introduction to datalog syntax. A datalog program consists
of facts and rules. Facts are stored in tables. If john is the parent of douglas then
parent(john,douglas). stores this fact in table named parent. Each item in the
parenthesized list following the name of the table is called a term.

A query can be used to see if a particular fact is the table. e.g. parent(john,douglas)?
It can also be used to find out value of specific attribute from certain row. e.g. parent(john,X)?
returns all childs of john. A term that begin with a capital letter is a variable.

A deductive database can use rules of inference to derive new facts. e.g ancestor(A,B):-parent(A,B).
The main difference from prolog is that the order in which clauses are asserted is

irrelevant. All queries terminate and every possible answer is derived.
Let us look at a sample datalog program. This is interpretable with bddbddb.

1 Z 1024
2
3 a s s i g n (X: Z ,Y: Z ) o u t p u t t u p l e s
4 bad (X: Z ) o u t p u t t u p l e s
5 re turn (X: Z ) o u t p u t t u p l e s
6 s h o u l d n o t r e t u r n (X: Z ) o u t p u t t u p l e s
7
8 bad ( 3 ) .
9

10 a s s i g n ( 0 , 1 ) .
11 a s s i g n ( 1 , 2 ) .
12 a s s i g n ( 1 0 , 5 ) .
13 a s s i g n ( 5 , 4 ) .
14 a s s i g n ( 4 , 2 ) .
15 a s s i g n ( 7 , 3 ) .
16 a s s i g n ( 4 , 7 ) .
17 a s s i g n (X,Y) :− a s s i g n (X, Z ) , a s s i g n ( Z ,Y) .
18
19 s h o u l d n o t r e t u r n (X) :− bad (X) .
20
21 s h o u l d n o t r e t u r n (X) ?

We first define domain of Z as integers. Then we give declarations of rules. This
program is based only on assignment. Then it contains all the program facts. After it
contains the definitions of the rules and then a query asking which object should not be
returned i.e which object are bad.

Now we discuss below one of the interpreters of Datalog which tried to scale anal-
ysis for larger code bases.

4.2 bddbddb [7]
Bddbddb, which stands for BDD-Based Deductive DataBase, is a solver for Datalog
with stratified negation, totally-ordered finite domains and comparison operators. bd-
dbddb represents relations using binary decision diagrams or BDDs. bddbddb trans-
lates each Datalog rule into a series of BDD operations, the find fix-point by applying
the operations for each rule until the program converges on a final set of relations.
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4.3 Expressing a Program Analysis in Datalog
Program analyses like type inference and points-to analyses, are often described for-
mally in the compiler architecture as inference rules, which naturally map to Datalog
programs. A datalog program analysis works similar to any other program. It accepts
set of relations as input and generated new relations as output.

4.4 From Datalog to BDD Operations
The solution to a datalog query with finite domains and stratified negations can be
obtained by applying sequences of relational algebra operations corresponding to the
Datalog rules iteratively, until a fixedpoint solution is reached. This is exactly similar
query evaluation for relational databases.

Now the relations can be encoded using boolean functions over tuples of binary
values. The first step is assigning elements in the domain, consecutive numeric values,
starting from 0. Suppose each of the attributes of an n-ary relation is associated with
numeric domains D1 × ...×Dn → {0,1} such that (d1, ...,dn) ∈ R iff f (d1, ...,dn) = 1
and vice-versa.

Large boolean functions can be represented efficiently using BDDs, which were
originally invented for hardware verification to efficiently store a large number of states
that share many commonalities.

The boolean functions needed to evaluate queries are a standard feature of BDD
libraries. The ∧(and), ∨(or), and −(difference) boolean function operations can be
applied to two BDDs, producing a BDD of the resulting function. Other operations
like existential quantification etc. can also be easily used to produce new BDD.

4.5 Translating and Optimizing Datalog Programs
The bddbddb system applies large number of optimizations to transfoem Datalog pro-
grams into efficient BDD operations:

• Before compilation the input is normalized using many transformations. These
include substituting comparisons with precomputations, inlining temporary rela-
tions, changing some variables to underscore etc.

• Datalog rules are also optimized for fast computation. The main optimization ap-
plied include removing rules which don’t contribute to final output, stratification,
finding cycles, and determining rule application order.

• Rules are translated to intermediate representation based relational algebra.

• Incrementalization is also applied to prevent repeated computation. So if all
inputs are same are previous application of this rule then the result can be directly
obtained and need not be computed

• Additional optimzations like global value numbering, copy propogation and live-
ness which reduces memory footprint.

• Decision variables are also ordered in such a way that keeps the size of tree
smaller and thus reduces computation time.
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Chapter 5

Conclusion

Although Java itself has tried to address the problem of security, there are some loop-
holes in the current security architecture. The architecture consisting of multiple layers
including security manager, access controller, class loader is far from complete. Some
of the layers like security manager are carried on just for backward compatibility since
all the work can be done by access controller.

Due to the possibility of a class being able to give privileges to other class for
performing operations, certain loopholes have been introduced. These loopholes needs
to be addressed at the analysis level due to huge importance of the privileged action for
legitimate accesses.

Points-to analysis is a type of static analysis which can be used to obtain informa-
tion about the program pointers. Its accuracy depends on type of abstraction used. It is
the basis of many analysis like field-sensitive shape analysis.

We have developed a security analysis based on points-to analysis to detect mali-
cious behaviour. We detect all the tainted objects and all pointers which have paths to
these tainted objects. This allows to determine which objects can be returned.

We plan to code our analysis in datalog which is a declarative programming lan-
guage. It is subset of prolog and is purely declarative. Even the order of statements
does not matter. But datalog has not been standardized like C++, Java etc. So there
many different interpreters each different from others in many aspects.

Datalog cannot operate directly on Java programs and requires intermediate sim-
plified representation of the program in form of facts. This task does not have a well
defined tool as of now. Many tools exists likt soot and soufle for extracting facts from
program but they all have lot of problems in working. There are lots of version con-
fllicts and most of these tools have been designed for some earlier versions of Java.
Even the fact extractor for bddbddb has been designed with some of the starting ver-
sions of java which are no longer supported. So the process of fact extraction is not in
good form as of now.

In future we would like to standardize the tools used in the analysis. We also would
like to scale the analysis for larger programs as most of programs where this kind will
be useful are libraries which have large code bases.
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